2. Quando due veicoli stanno per impegnare una intersezione, ovvero laddove le loro traiettorie stiano comunque per intersecarsi, si ha l'obbligo di
Verso una governance dei cittadini. Quali le traiettorie di partecipazione innovativa?
Le traiettorie della partecipazione nel caso italiano: un'occasione di modernizzazione
Storno illecito di dipendenti e "animus nocendi": traiettorie evolutive
Forma aperta: La composizione esprime diverse traiettorie, verticali o diagonali e non avendo un asse di simmetria suggerisce la possibilità di poter
Pagina 14
Quando mi stendo sul tappeto del salotto e guardo in alto, a volte c'è una mosca a volte un moscerino che volando descrive traiettorie stranamente
Procediamo anzitutto all' identificazione delle due traiettorie. Quella del pacchetto d'onde non è altro che un «raggio» ed è quindi determinata
Pagina 160
degli elettroni, le cui traiettorie equivalgono a tanti circuiti elettrici. Calcoliamo, sulla base di questo modello, il momento magnetico prodotto dal
Pagina 273
. Dimostrare: che il luogo dei fuochi delle varie traiettorie è una circonferenza (di centro O e di raggio ); che il luogo dei vertici è un’ellisse; che
Pagina 151
’ammessa rigidità di S, non si possono prefissare ad. arbitrio i moti di codesti tre punti e nemmeno le loro traiettorie.
Pagina 157
2°) in tre moti traslatori (a traiettorie rettilinee) secondo tre direzioni a due a due ortogonali (per es. quelle degli assi fissi) i quali si
Pagina 163
, descrivono, sulle rispettive traiettorie circolari, archi il cui angolo al centro è ΔΘ; cosicché considerando il
Pagina 163
rettilineo uniforme (su traiettorie parallele, con la stessa velocità) e il moto rigido si dice traslatorio uniforme.
Pagina 163
, traiettorie congruenti e parallele; cosicché l'andamento geometrico del moto è senz’altro messo in chiaro.
Pagina 206
§ 2. - Traiettorie polari.
Pagina 227
6. L’importanza della considerazione delle due traiettorie polari risulta dal fatto che: Durante il moto, la rulletta rotola, senza strisciare, sulla
Pagina 228
7. Il concetto di traiettorie polari è suscettibile di una generalizzazione che, come vedremo, presenta un notevole interesse applicativo.
Pagina 229
Notiamo, infine, che il moto reciproco (n. 8 del Cap. prec.) ha le medesime traiettorie polari, salvo lo scambio fra rulletta e base.
Pagina 229
11. Prima di proceder oltre nelle deduzioni di ordine generale, diamo qualche esempio elementare di determinazione delle traiettorie polari di dati
Pagina 231
non differirà da quello trovato dianzi, cioè le due nuove traiettorie polari sono ancora archi delle circonferenze or ora designate con γ e c. È poi
Pagina 233
. Possiamo quindi concludere: Le traiettorie polari λ ed l sono ellissi eguali, aventi rispettivamente per fuochi i vertici fissi A, B e i vertici
Pagina 236
Per il teorema di Chasles (n. 4), I'M c e I'M γ risultano normali alle traiettorie di M, cioè alle curve c e γ.
Pagina 237
pratiche di descrizione per punti di uno dei due profili, quando sia dato l’altro e si conoscano le due traiettorie polari l e λ.
Pagina 237
Si fissa ad arbitrio una curva k che, per una data posizione delle due traiettorie polari, sia tangente ad entrambe nel loro punto di contatto I 0
Pagina 237
§ 6. - Moto del polo sulle traiettorie polari.
Pagina 239
Oltreché teoricamente più semplice, la realizzazione mediante le traiettorie polari, presenta il vantaggio di sopprimere le influenze passive dovute
Pagina 239
Questa formula permette di calcolare la velocità (scalare) del centro istantaneo di rotazione sulle traiettorie polari, quando si conosca la velocità
Pagina 241
Considerato ancora un moto piano generico, designamo al solito con F la figura mobile, con l e λ le traiettorie polari e con c e γ due profili
Pagina 242
Siano IT e IN la tangente e la normale comuni alle traiettorie polari in I; MT' ed MN' la tangente e la normale comuni in M ai due profili coniugati.
Pagina 242
Quanto ai centri di curvatura C l e Γλ delle due traiettorie polari, i quali giacciono entrambi sulla IN, cioè sull’asse delle y, designeremo con r l
Pagina 245
traiettorie polari). Basta, nel corollario testé enunciato, valido pei sinα ≠ 0, passare al limite, facendo convergere a zero sinα (ciò che lo lascia
Pagina 247
Le traiettorie dei punti solidali si chiamano in conformità ipocicloidi. Avvertiamo tuttavia, pur tralasciando di dimostrarlo, Si può consultare in
Pagina 252
Se è invece la rulletta che diviene retta, allora le traiettorie dei suoi punti costituiscono (n. prec.) altrettante evolventi della base; quelle dei
Pagina 260
45. Ciò premesso, consideriamo un intervallo di tempo finito, in cui I cada sempre a distanza finita, prendendo a considerare le due traiettorie
Pagina 265
Sussiste la seguente proposizione generale: Da una coppia conosciuta di traiettorie polari ρ = f(ζ), ρ' = f'(ζ'), se ne possono desumere infinite
Pagina 268
delle due ruote è epicicloidale. Le due traiettorie polari si chiamano circonferenze primitive. Esse costituirebbero (n. 23) l’ideale dei profili
Pagina 269
dalle traiettorie polari.
Pagina 270
accezione generale (applicabile ad un moto piano qualsiasi) di luogo dei contatti di due profili coniugati rispetto al contatto delle traiettorie
Pagina 275
) che il circolo dei flessi è tangente in Ω all’asse ξ, cioè tocca nel polo istantaneo le due traiettorie polari, mentre il circolo di stazionarietà è
Pagina 280
Dimostrare che se in un moto epicicloidale (propriamente detto) i raggi dei due cerchi hanno la stessa lunghezza R, le traiettorie dei punti della
Pagina 281
la quale determina la legge temporale, secondo cui codeste traiettorie sono percorse dai rispettivi punti.
Pagina 287
Per tali sistemi, che diconsi a vincoli completi, sono determinate a priori le traiettorie dei singoli punti del sistema, e a definire il moto basta
Pagina 287
In altre parole, in un campo conservativo le linee di forza sono le traiettorie ortogonali delle superficie equipotenziali.
Pagina 341
biunivoca tale che: 1°. Le traiettorie descritte dai varii punti di Σ costituiscano nel loro insieme una figura geometricamente simile a quella costituita
Pagina 376
dati sopra una superficie due fasci di linee unisecantisi, le generatricie le direttrici o traiettorie descritte dai punti della linea mobile.
Pagina 193
fra le possibili traiettorie di un punto nello spazio, e la geodetica fra le possibili traiettorie di un punto sopra una superficie.
Pagina 297
sola), luogo geometrico di tutti i punti P (t); e tutto lo spazio delle fasi è rigato da una famiglia di tali traiettorie. Nel caso più comune che il
Pagina 518
A questo proposito si considerano i sistemi ergodici, e cioè quelli per cui le predette traiettorie, avvolgendosi continuamente sopra le superficie
Pagina 519
La forma di queste traiettorie, che si distendono sulle superficie H = cost., è in generale assai complicata; essa ha notevole importanza nei
Pagina 519
Noi, con tranquilla coscienza, consideriamo quale spazio quella vasca in cui già Democrito vide tumultuare in vorticose traiettorie i suoi atomi che
Pagina 42